A Novel Adaptive Probabilistic Nonlinear Denoising Approach for Enhancing PET Data Sinogram
نویسندگان
چکیده
We propose filtering the PET sinograms with a constraint curvature motion diffusion. The edge-stopping function is computed in terms of edge probability under the assumption of contamination by Poisson noise. We show that the Chi-square is the appropriate prior for finding the edge probability in the sinogram noise-free gradient. Since the sinogram noise is uncorrelated and follows a Poisson distribution, we then propose an adaptive probabilistic diffusivity function where the edge probability is computed at each pixel.The filter is applied on the 2D sinogram prereconstruction.The PET images are reconstructed using the Ordered Subset Expectation Maximization (OSEM). We demonstrate through simulations with images contaminated by Poisson noise that the performance of the proposed method substantially surpasses that of recently published methods, both visually and in terms of statistical measures.
منابع مشابه
A Real Time Adaptive Multiresolution Adaptive Wiener Filter Based On Adaptive Neuro-Fuzzy Inference System And Fuzzy evaluation
In this paper, a real-time denoising filter based on modelling of stable hybrid models is presented. Thehybrid models are composed of the shearlet filter and the adaptive Wiener filter in different forms.The optimization of various models is accomplished by the genetic algorithm. Next, regarding thesignificant relationship between Optimal models and input images, changing the structure of Optim...
متن کاملTotal Variation Regularisation in Measurement and Image space for PET reconstruction
The aim of this paper is to test and analyse a novel technique for image reconstruction in positron emission tomography, which is based on (total variation) regularisation on both the image space and the projection space. We formulate our variational problem considering both total variation penalty terms on the image and on an idealised sinogram to be reconstructed from a given Poisson distribu...
متن کاملSegmentation Based Denoising of PET Images: An Iterative Approach via Regional Means and Affinity Propagation
Delineation and noise removal play a significant role in clinical quantification of PET images. Conventionally, these two tasks are considered independent, however, denoising can improve the performance of boundary delineation by enhancing SNR while preserving the structural continuity of local regions. On the other hand, we postulate that segmentation can help denoising process by constraining...
متن کاملExperimental Investigation of Angular Stackgram Filtering for Noise Reduction of SPECT Projection Data: Study with Linear and Nonlinear Filters
We discuss data filtering prior to image reconstruction. For this kind of filtering, the radial direction of the sinogram is routinely employed. Recently, we have introduced an alternative approach to sinogram data processing, exploiting the angular information in a novel way. This new stackgram representation can be regarded as an intermediate form of the sinogram and image domains. In this ex...
متن کاملStatistical Wavelet-based Image Denoising using Scale Mixture of Normal Distributions with Adaptive Parameter Estimation
Removing noise from images is a challenging problem in digital image processing. This paper presents an image denoising method based on a maximum a posteriori (MAP) density function estimator, which is implemented in the wavelet domain because of its energy compaction property. The performance of the MAP estimator depends on the proposed model for noise-free wavelet coefficients. Thus in the wa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Applied Mathematics
دوره 2013 شماره
صفحات -
تاریخ انتشار 2013